Precursor lesions in humans and mouse models

Irene Esposito, Katja Steiger

Pancreatic pathology: Of mice and men
Madrid, December 4-6th 2014
Introduction

Precursor - Definition

• Criteria to define a precursor to invasive cancer:
 • Must be associated with an increased risk of the cancer
 • Resulting cancer arises from cells within the precursor
 • Precursors differ from the normal tissue
 • Precursors differ from the cancer
 • A method should be available by which the precursor can be diagnosed
• Comparable morphology in humans and mouse models
Introduction

Precursors of PDAC

- Pancreatic Intraepithelial Neoplasia (PanIN)
- Intraductal papillary mucinous neoplasia (IPMN)
- Mucinous cystic neoplasia (MCN)
- (Atypical Flat Lesions (AFL))
Pancreatic Intraepithelial Neoplasia (PanIN)

- Microscopic (<0.5cm)
- Flat or papillary
- Noninvasive
- Arise in small intra- or interlobular pancreatic ducts
- Number increases with age
- Male=Female
- Head>Body/Tail
- Often multifocal

- Ductal epithelial proliferation
- confined to the native pancreatic ducts (<1mm)
- appropriate setting
- no significant acinar differentiation

Occur in several mouse models (chemically induced and GEMM)
Pancreatic Intraepithelial Neoplasia (PanIN)

Noninvasive epithelial proliferations within the smaller pancreatic ducts

PanIN1A: flat with uniform, tall columnar cells, basally located nuclei and abundant supranuclear mucin, nuclei small, basally located, round to oval

PanIN1B: morphologically identical to PanIN1A, but with papillary, micropapillary or basally pseudostratified architecture

Common genetic alterations:
- Telomere shortening
- Activating point mutation of KRAS
Pancreatic Intraepithelial Neoplasia (PanIN)

Noninvasive epithelial proliferations within the smaller pancreatic ducts

PanIN1A: flat with uniform, tall columnar cells, basally located nuclei and abundant supranuclear mucin, nuclei small, basally located, round to oval

PanIN1B: morphologically identical to PanIN1A, but with papillary, micropapillary or basally pseudostratified architecture

Humans vs. mouse models
Pancreatic Intraepithelial Neoplasia (PanIN)

Noninvasive epithelial proliferations within the smaller pancreatic ducts

PanIN1A: flat with uniform, tall columnar cells, basally located nuclei and abundant supranuclear mucin, nuclei small, basally located, round to oval

PanIN1B: morphologically identical to PanIN1A, but with papillary, micropapillary or basally pseudostratified architecture

Humans vs. mouse models

PAS-reaction

PAS-Alcianblue staining
Pancreatic Intraepithelial Neoplasia (PanIN)

Noninvasive epithelial proliferations within the smaller pancreatic ducts

PanIN2: flat or papillary with some nuclear abnormalities (loss of polarity, nuclear crowding, enlarged nuclei, pseudostratification or hyperchromatism), rarely mitoses

Common genetic alterations:
- Telomere shortening
- Activating point mutation of KRAS
- Inactivating mutations in p16/CDKN2

Maitra et al. Mod Pathol 2003
Pancreatic Intraepithelial Neoplasia (PanIN)

Noninvasive epithelial proliferations within the smaller pancreatic ducts

PanIN2: flat or papillary with some nuclear abnormalities (loss of polarity, nuclear crowding, enlarged nuclei, pseudostratification or hyperchromatism), rarely mitoses
Pancreatic Intraepithelial Neoplasia (PanIN)

Noninvasive epithelial proliferations within the smaller pancreatic ducts

PanIN3: papillary or micropapillary, cribriform with loss of polarity, dystrophic goblet cells, mitoses (normal/abnormal), nuclear irregularities, prominent (macro) nucleoli; “budding off” into the lumen, luminal necrosis; no invasion through the basement membrane

Common genetic alterations:
- Telomere shortening
- Activating point mutation of *KRAS*
- Inactivating mutations in *p16/CDKN2*
- Inactivation of *SMAD4, TP53* and *BRCA2*
Pancreatic Intraepithelial Neoplasia (PanIN)

Noninvasive epithelial proliferations within the smaller pancreatic ducts

PanIN3: papillary or micropapillary, cribriform with loss of polarity, dystrophic goblet cells, mitoses (normal/abnormal), nuclear irregularities, prominent (macro) nucleoli; “budding off” into the lumen, luminal necrosis; no invasion through the basement membrane

Humans vs. mouse models
Human PanIN

Low-grade

High-grade

Ki67

p53
Low-grade mPanIN

mPanIN 1A

CK19: red
Amylase: brown

Ki-67

mPanIN 1B
High-grade mPanIN

CK19: red
Amylase: brown

Ki-67
Pancreatic Intraepithelial Neoplasia (PanIN)

Noninvasive epithelial proliferations within the smaller pancreatic ducts

Humans vs. mouse models

- Is distinguished from IPMN by size (<1cm) and morphology
- “Cancerization” of ducts can mimic PanIN

- Appropriate setting (confined to native pancreatic ducts, <1mm)
Pancreatic Intraepithelial Neoplasia (PanIN)

Noninvasive epithelial proliferations within the smaller pancreatic ducts

Humans vs. mouse models

- Is distinguished from IPMN by size (<1cm) and morphology
- „Cancerization“ of ducts can mimic PanIN

- Appropriate setting (confined to native pancreatic ducts, < 1mm)
- Ductular-insular complexes should not be classified as PanINs
IPMN

Humans vs. mouse models

- Grossly visible mucin-producing epithelial neoplasm in main pancreatic duct or one of its branches
- Papillary architecture

- Cystic papillary neoplasms
 - Cystic structures >1mm
 - Papillary, noninvasive epithelial proliferations with varying degrees of cellular atypia
 - Might resemble human IPMN

Described in models with:
- Concomitant expression of TGFα and KrasG12D
- Additional deletion of Smad4 in Cre-KrasG12D model
IPMN

Humans vs. mouse models

- Grossly visible mucin-producing epithelial neoplasm in main pancreatic duct or one of its branches
- Papillary architecture

- Cystic papillary neoplasms
 - Cystic structures >1mm
 - Papillary, noninvasive epithelial proliferations with varying degrees of cellular atypia
 - Might resemble human IPMN

Intestinal type

Pancreatobiliary type

KrasG12D-Ela TGFα
Ptf1a^{+}/Cre;Kras^{G12D};Ela-Tgfa

Siveke et al, Cancer Cell 2007
MCN

Humans vs. mouse models

- Mucin-producing epithelial cells associated with an ovarian-type of stroma
- Different degrees of epithelial dysplasia
- Stroma expresses progesterone and estrogen receptors and inhibin
- Associated carcinoma in about 30% of MCN

- Cystic neoplasms with mucinous epithelium
- With dense “ovarian-type” stroma
- Presence/absence of associated invasive carcinoma should be documented
- Occurred after additional Smad4 or Notch2 deletion in KC model
Precursors of PDAC in mouse models

A

Activation

Inactivation

Cre recombinase (defines cell lineage)

STOP

B

Kras

+ Tgα3
+ Smad4
+ Notch2

IPMN

MCN

PanIN

PanIN

PanIN

PanIN

IPMN-to-PDAC

MCN-to-PDAC

Poorly-differentiated PanIN-to-PDAC

Anaplastic PanIN-to-PDAC

Metastatic PanIN-to-PDAC

Well-differentiated PanIN-to-PDAC

Mazur, Siveke; Gut 2011
Acinar ductal metaplasia (ADM)

- Metaplasia = Conversion or replacement of one differentiated cell type with another
- ADM: acinar cells undergo metaplasia to a ductal cell phenotype in a setting of acute or chronic inflammation
- Occurrence of tubular complexes (TC) and mucinous tubular complexes (MTC)

Humans vs. mouse models

- ADM progressively extends with increasing age (in Ptf1Cre;KrasG12D – mice about 77% of whole pancreas replaced with 36 weeks)
Acinar ductal metaplasia (ADM)

- Metaplasia = Conversion or replacement of one differentiated cell type with another
- ADM: acinar cells undergo metaplasia to a ductal cell phenotype in a setting of acute or chronic inflammation
- Occurrence of tubular complexes (TC) and mucinous tubular complexes (MTC)

Humans vs. mouse models

- ADM progressively extends with increasing age (in Ptf1-Cre;KrasG12D – mice about 77% of whole pancreas replaced with 36 weeks)
ADM

Kras
Notch
TGFα
Rac1
Raf/MEK/ERK
...

inflammation

Tubular complexes

De La O et al, PNAS 2008
Siveke et al, Cancer Cell 2007
Guerra et al, Cancer Cell 2007
Heid et al, Gastroenterology 2011
Shi et al, Oncogene, 2013
Ptf1a\textsuperscript{+/Cre(ex1), LSL-KrasG12D} (4 weeks)

Amylase: brown
CK19: red
ADM in the human pancreas
ADM in the human pancreas

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Nº</th>
<th>TC or</th>
<th>PanIN</th>
<th>TC</th>
<th>PanIN-1</th>
<th>PanIN-2</th>
<th>PanIN-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDAC</td>
<td>92</td>
<td>72 (78%)</td>
<td>56 (61%)</td>
<td>54 (59%)</td>
<td>17 (18%)</td>
<td>14 (15%)</td>
<td></td>
</tr>
<tr>
<td>CP</td>
<td>45</td>
<td>42 (93%)</td>
<td>35 (78%)</td>
<td>32 (71%)</td>
<td>5 (11%)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SCA</td>
<td>27</td>
<td>18 (67%)</td>
<td>12 (44%)</td>
<td>16 (59%)</td>
<td>4 (15%)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fall</th>
<th>ADM</th>
<th>ADM</th>
<th>PanIN-1</th>
<th>PanIN-2</th>
<th>PanIN-3</th>
<th>Karzinom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CGT</td>
<td>CGT</td>
<td>GAT</td>
<td>Wildtyp</td>
<td>GAT</td>
<td>GAT</td>
</tr>
<tr>
<td>2</td>
<td>GAT</td>
<td>GAT</td>
<td>GAT</td>
<td>–</td>
<td>–</td>
<td>GAT</td>
</tr>
<tr>
<td>3</td>
<td>CGT + GTT</td>
<td>Wildtyp</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>GTT</td>
</tr>
<tr>
<td>4</td>
<td>GAT + GTT</td>
<td>GAT</td>
<td>CGT</td>
<td>–</td>
<td>–</td>
<td>GAT</td>
</tr>
<tr>
<td>5</td>
<td>GTT</td>
<td>GTT</td>
<td>GAT + GTT</td>
<td>GAT</td>
<td>GAT</td>
<td>GAT</td>
</tr>
<tr>
<td>6</td>
<td>CGT + GTT</td>
<td>CGT</td>
<td>GAT</td>
<td>GTT</td>
<td>GAT</td>
<td>GAT</td>
</tr>
</tbody>
</table>

Kras

Atypical flat lesions (AFL)

Ptft1a+/Cre(ex1);LSL-KrasG12D/+
Atypical Flat Lesions (AFL)

- Flat, non-mucinous lesions
- Background of ADM with dysplasia (nuclear pleomorphy, increased nuclear-cytoplasm ratio, prominent nucleoli, mitoses)
- perilesional stromal reaction
Atypical Flat Lesions (AFL)

- Flat, non-mucinous lesions
- Background of ADM with dysplasia (nuclear pleomorphy, increased nuclear-cytoplasm ratio, prominent nucleoli, mitoses)
- Perilesional stromal reaction

PAS-reaction

PAS-Alcianblue staining
Atypical Flat Lesions (AFL)

Table 4. Molecular analysis of microdissected murine lesions

<table>
<thead>
<tr>
<th>Sample</th>
<th>p16^{nk4} methylation</th>
<th>p16^{nk4a} gene inactivation</th>
<th>p19^{Arf} gene inactivation</th>
<th>p53 gene mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>M222</td>
<td>+</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>W36</td>
<td>+</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>M172</td>
<td>+/-</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>W270</td>
<td>+/-</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

Y = yes; N = no. +/−, weak promoter methylation detected; +, robust promoter methylation detected.
Kinetics of the lesions

Number of lesions/mouse vs. Age (weeks)

- Black squares: AFL
- Gray square: PanIN 3
<table>
<thead>
<tr>
<th>Marker</th>
<th>TC MML</th>
<th>MTC'/ AFL</th>
<th>PanIN low-grade</th>
<th>PanIN high-grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amylase</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Muc1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Claudin-18</td>
<td>+</td>
<td>+</td>
<td>-/+</td>
<td>+</td>
</tr>
<tr>
<td>Mib1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>p53 (TP53)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Smad 4</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>p16*</td>
<td>nd</td>
<td>nd</td>
<td>-</td>
<td>nd</td>
</tr>
<tr>
<td>Pdx1</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
<td>+</td>
</tr>
<tr>
<td>CK5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>αSMA</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
Atypical Flat Lesions (AFL)

• Flat, **non-mucinous** lesions
• Background of ADM with dysplasia (nuclear pleomorphism, increased nuclear-cytoplasm ratio, prominent nucleoli, mitoses)
• perilesional stromal reaction

Aichler et al, *J Pathol* 2012
Esposito et al, *Pathologe* 2012